If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-14x-561=0
a = 2; b = -14; c = -561;
Δ = b2-4ac
Δ = -142-4·2·(-561)
Δ = 4684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4684}=\sqrt{4*1171}=\sqrt{4}*\sqrt{1171}=2\sqrt{1171}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{1171}}{2*2}=\frac{14-2\sqrt{1171}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{1171}}{2*2}=\frac{14+2\sqrt{1171}}{4} $
| 1.5(b+2)26b-9=15 | | -25x^2-75x+210=0 | | -0.3(-2x-8)+3=9 | | -25x-75x+210=0 | | 9-6(4x-1)=1x+15 | | c/9–8=17 | | 8d+15=16d | | 30=y/2-8 | | 40=3y+2y | | 1/8(3y+2)=1/4(2y+1/2) | | 0,3+a=1,6 | | 5(8-4.6)=-3(5-1.5x) | | 35-5a=−30 | | 2(2x+8)=3/4(24-8x) | | 4(x+8)-2x=6x+32-4x | | x=13-4*3+2 | | x=13-4x3+2 | | 4(x+8)4(x+8)-2x=6 | | 23x-20x=2x+1 | | -10(x+5)62=-19-19 | | 5n-16-9n=-10 | | 3/5x-24=15 | | 2/3n+8=23 | | 25t^2+2=3 | | .75x-16=2x-6+4 | | 2x+6-8=-5x-3x-2 | | -55-2x=19-4x | | 17x-12x=2x-6 | | H(t)=16t+100 | | -9-(9x=6)=3(4x+6) | | -8(n-16)=-8n-10+6 | | 10(0.2+0.4c)=10c+.2-6c |